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Abstract. The dynamical characteristics of the vitrification process for a binary soft-sphere
system are studied by means of an extensive molecular dynamics simulation. Using a Cole–
Cole plot of the susceptibility, evidence is given for the first time of a fast process, which can be
identified over a certain temperature range. Comparing with an ideal three-mode model in three
dimensions, it is concluded that the fast process and the boson peak are related to the trapped
motion.

1. Introduction

Liquids can be transformed into solids along two different paths; one is the crystallization
path and the other is the vitrification path. In the vitrification process, a liquid solidifies
keeping its structure. Thus one can regard the glass as a liquid which does not flow and is
in a state under an extreme condition.

The dynamics of atoms during the vitrification process follows a completely different
path to that for the crystallization process, which can be clearly seen in the temperature
dependence of the generalized susceptibility. In fact, many experimental studies of the
vitrification process have been carried out using neutron scattering [1, 2], light scattering
[3] and dielectric measurements [4]. In most of these experiments, the imaginary part of
the generalized susceptibility,χ ′′(q, ω), has been measured as a function of temperature.
According to these experiments, in supercooled liquids, at least three different types of
dynamics can be identified [1–5]:

(1) a slow relaxation, separated from the main peak, which moves to lower frequency
as the temperature is reduced further [1–3];

(2) a so-called boson peak [2], whose position does not depend much on the temperature;
(3) a fast-relaxation process, which is observed over a limited temperature region [5].

In many systems, the relaxation time,τα, of the slow process can be fitted by the Vogel–
Fulcher equation

τα ∼ exp[DT0/(T − T0)] (1)

which diverges at a temperatureT0 known as the Vogel–Fulcher temperature. Here,T

is the temperature andD, a positive constant, is called the fragility parameter. These
characteristics of the dynamics have also been observed for a model glass former by
computer simulation [6]. The assignment of these characteristics of the dynamics is the
most important task in achieving an understanding of the glass-forming process.
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In this paper, we study the dynamical characteristics of a binary soft-sphere model, in
which particles interact with each other through a purely repulsive force. It is known [8]
that the repulsive part of the molecular interaction plays the major role in the crystallization,
in particular under high pressures. We believe that the present system is the simplest one
that shows a glass transition, and that the properties observed in the glass-forming process
for the soft-sphere system should be observed in the vitrification process in general. We
report in section 2 the Cole–Cole plot [7] analysis of the generalized susceptibility for the
binary soft-sphere system made to assign the dynamical modes. In section 3, we explain
the ideal three-mode model in three dimensions [9]. From comparison of the results with
simulation, we assert that (1) the slow process is related to the jump motion, (2) the fast
process is due to the trapped diffusive motion and (3) the boson peak is due to localized
oscillatory motions.

2. Cole–Cole analysis of the susceptibility

2.1. The model and procedure of simulation

We use a binary soft-sphere system [10]; the interparticle potential,φαβ(r), of two particles
of the speciesα andβ at a distancer is purely repulsive:

φαβ(r) = ε(σαβ/r)12 (α, β = 1, 2) (2)

where

σαβ = (σα + σβ)/2.
The total number of particles,N (=N1+N2), is 500, and the ratios of the atomic fractions,
diameters and masses areN1/N2 = 1, σ1/σ2 = 1.2 andm1/m2 = 2.0, respectively. The
temperature and the density of the system can be effectively reduced to one parameter
known as the effective coupling constant [10]:

0eff = (N/V )σ 3
eff(ε/kBT )

1/4 (3)

whereV is the volume,kB is the Boltzmann constant and the effective diameter is defined
by

σ 3
eff = (σ 3

11+ σ 3
12+ σ 3

21+ σ 3
22)/4.

Note that0eff is proportional toT −1/4 when the density is fixed.
The simulation starts from the liquid state at0eff = 0.8; we are using a constant-

temperature simulation. The time step of the simulation is 0.001τ , where

τ ≡
√
mσ 2

1/ε

is a microscopic timescale of the system. After the system is quenched to each measurement
temperature and annealed, we switch to a microcanonical simulation and calculate the self-
part of the generalized susceptibility

χs(q, ω) ≡ χ ′s(q, ω)+ iχ ′′s (q, ω)

using the following equation [11]:

χs(q, ω) = 1+ iω

Ttotal

〈∑
j

∫ Ttotal

0
dt0 eiq·ri (t0)e−iωt0

∫ t0

0
dt e−iq·rj (t)eiωt

〉
i

(4)

whereri (t) is the position of theith atom at timet , which is computed directly by MD
simulation. Here,Ttotal is the total number of time steps of the integration in equation (4),
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which has to be sufficiently large. In our calculation, we have integrated up to 1 000 000
time steps, which corresponds to the order of ten nanoseconds. It has been shown that the
freezing point and the glass transition point are at0eff = 1.15 and 1.58, respectively [10].

Figure 1. Cole–Cole plots ofχs(q, ω) at different temperatures. The numbers in the figure are
values of the effective coupling constant,0eff, which is proportional toT −1/4. The wavenumber
q = 2π/σ1 corresponds to the inverse interparticle distance. All of the data are averaged for
two species. These curves are the result of one run of the MD simulation and the rapid variation
of the curves is a good estimate of the error bars.

2.2. Results

The dynamical modes can be clearly seen in the Cole–Cole plot where the imaginary part
of the susceptibility is plotted against the real part of the susceptibility for various values
of the frequency. Figure 1 shows the Cole–Cole plot for our system obtained from the
MD simulation. For the liquid state,0eff = 0.8, the plot is close to a semicircle except in
the vicinity of the origin (where the frequency is very high). This indicates that the atomic
motion in the liquid state is well described by a simple exponential relaxation, except at high
frequencies where the high-frequency oscillation gives rise to the ‘curled-over’ behaviour of
the plot. When the temperature is reduced, the shape of the semicircle becomes flattened and
below the melting temperature,0eff > 1.15, the plot splits into two semicircles, separating
out a slow dynamics.

The semicircle on the high-frequency side is considered to be mostly due to the
oscillatory motion, since the high-frequency side of the semicircle goes to the negative
side of the horizontal axis. Note that an arc appears at the right-hand shoulder of this
semicircle. From a careful analysis we conclude that this arc is related to the fast process.

We determined the characteristic time of the fast process from the arc in the Cole–Cole
plot. We plot the temperature dependence of the characteristic time in figure 2 as triangles,
where the timescales of the slow process (the squares) and the microscopic process (the
circles) obtained previously [6] are also shown. We conclude that the timescale of the
fast process is independent of temperature in this region. We reported elsewhere [12]
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Figure 2. The temperature depen-
dence of the characteristic time of the
fast process (triangles). The squares
and circles represent the characteris-
tic time for the α-relaxation and the
boson peak, respectively. The solid
curve shows the Vogel–Fulcher law (1)
with D = 13.1 andT0 = 11.8ε/kB .

the wavenumber dependence of the susceptibility, and concluded that the fast process is
produced on an atomic scale and that the slow process originates in the jump motion.

3. The ideal three-mode model

3.1. The model

In order to test the assignment of the modes described in section 2, we consider an ideal
model in three dimensions consisting of three modes, an oscillatory motion, a trapped jump
motion and a non-trapped jump motion. We consider an atom on a cubic lattice (the lattice
constant is denoted bỳ) which performs a harmonic oscillation around sites and denote
the position of the atom by

x(t) = s+ x0 sin(�t). (5)

We assume thats follows two kinds of stochastic motion: one is the jump motion among
the lattice sites, where the atom can make a jump only to adjacent sites with jump ratew;
the other is the motion among decorated sites around a given lattice site. The distance and
the rate of jumps between the lattice site and an additional site are denoted bya (a < `)
andwb (w 6 wb 6 �), respectively. Figure 3 shows these motions schematically.

According to a recent analysis of the wavenumber dependence ofχ ′′s (q, ω) for the soft-
sphere system [13], the length scale|x0| of the oscillatory motion is of the order of a few
tens of per cent of the interparticle distance and that,a, for the stray motion is of the order
of the interparticle distance. The frequency� is considered to be of the order of the Einstein
frequency. Because of the random structure, most of the oscillatory modes are supposed to
be localized and their frequency is distributed around the Einstein frequency.

We introduce the probability,P(s, t), that the atom is at sites ≡ n+σ at timet , when
it started at sites = 0 at timet = 0, wheren is a lattice site andσ represents one of the
decorated sites ofn. The conditional probability,P(s, t), is assumed to be determined by
the master equations

d

dt
P (n+ σ, t) = wb[P(n, t)− P(n+ σ, t)] (6)
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Figure 3. A schematic illustration
of two kinds of stochastic jump mo-
tion in a three-dimensional lattice.
The atom performs a long jump mo-
tion between the lattice sites, with
jump rate w, and a short jump
around each site, with jump rate
wb. It also independently performs
an oscillatory motion, which is not
shown.

and
d

dt
P (n, t) =

∑
n′
wP(n′, t)+

∑
σ

wbP (n+ σ, t)− 6(w + wb)P (n, t) (7)

where the summation forn′ is taken over the nearest neighbours of siten and the summation
for σ 6= 0 is taken over the decorating sites ofn. It is straightforward to show that, if
P(n, t) obeys equations (6) and (7), the Laplace–Fourier transform

˜̃
P(q, u) ≡

∑
n

exp(iq · n)
∫ ∞

0
P(n, t)e−ut dt (8)

is given by (see the appendix)

˜̃
P(q, u) =

{
u+ 6w + 6wb − 6w2

b

u+ wb − 2w[cos(qx`)+ cos(qy`)+ cos(qz`)]

}−1

. (9)

We obtain the generalized susceptibility from

χs(q, ω) = 1+ iω
∫ ∞

0
Fs(q, t)exp(iωt) dt (10)

where the self-part of the intermediate scattering function,Fs(q, t), is defined by

Fs(q, t) =
∑
s

〈exp{iq · [s+ x0 sin(�t)]}〉P(s, t). (11)

Here〈· · ·〉 denotes an average over the distribution of frequency�, which is introduced to
take account of the inhomogeneity of the local configuration around the potential well. We
employ the elliptic distribution as a simple example, where the density of states of� is
given by

D(�) =


2

π1

(
1− (�−�0)

2

12

)1/2

when |�−�0| 6 1

0 otherwise.

(12)
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Figure 4. The imaginary part of the generalized susceptibility for the ideal three-mode model
in three dimensions. We setx0 = (0.15̀ , 0.15̀ , 0.15̀ ), a = 0.6`, �0 = 15wb, 1 = 9wb,
q = (2/`, 2/`, 2/`) andw/wb = 0.01 (solid curve), 0.05 (dashed curve) and 0.1 (dotted curve).

3.2. Generalized susceptibility and the Cole–Cole plot

In figure 4, we show the typical behaviour of the imaginary part of the generalized
susceptibility,χ ′′s (q, ω), for three different values ofw.

We find that the position of the peak on the lower-frequency side, which is determined
by non-trapped jumps, is given byw−1 and that the height of this peak does not change
significantly even ifw is varied. Note that it has been shown [14] that, whenw obeys
a power-law distribution, the relaxation time for this peak follows the Vogel–Fulcher law
(1). Similarly, the position of the middle peak, which is determined by the trapped jump
motion, is scaled bywb and the height of this peak does not change significantly whenwb
is varied.

The peak on the high-frequency side, which is determined by the oscillatory motion,
appears at twice the frequency of the centre of the distribution,�0. The height of this
peak is scaled by the squared amplitude of the oscillatory motion,|x0|2, i.e. the average
potential energy of the oscillatory motion. This indicates that the peak can be scaled by the
temperature, in agreement with results of reference [6]. We also confirmed that the peak
height can be scaled by the square of the wavenumber.

Figure 5 shows a Cole–Cole plot of the generalized susceptibility. The peak determined
by the non-trapped jump motion appears as a semicircle at the right-hand side, with the
centre on the real axis, and the peak determined by the trapped jump motion appears as a
central arc. The Cole–Cole plot shows a curl on the negative side ofχ ′s(q, w). Comparing
figures 1 and 5, we can conclude that the slow process is produced by the non-trapped jump
motion and that the fast process and the boson peak can be assigned to a trapped stochastic
motion and to a localized oscillatory motion, respectively.
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Figure 5. A Cole–Cole plot of the
generalized susceptibility for the ideal three-
mode model in three dimensions. We set
x0 = (0.1`, 0.1`, 0.1`), a = 0.5`, w =
0.1wb, �0 = 15wb, 1 = 9wb and q =
(2/`, 2/`, 2/`).

4. Discussion

In this paper we have discussed the gradual transition from the liquid to the solid state for the
dynamical properties of a supercooled binary soft-sphere system obtained by MD simulation
and presented evidence, for the first time, of the fast process in simulated supercooled
liquids. In order to assign the dynamics observed in the simulation, we have introduced an
ideal three-mode model in three dimensions. From the comparison of the behaviour of the
Cole–Cole plot, we attribute the slowest mode to a concerted jump motion from a trapped
site, the fast process to a trapped diffusion and the boson peak to a rapid oscillation in a
trapped region. Since these modes are observed in the simple system with purely repulsive
interaction, they must represent dynamical characteristics in any glass formers as observed
in experiments [2–4], and other relaxation processes should be attributed to dynamics related
to the degrees of freedom other than the translational motions of the centres of mass of the
molecules. It should be noted that the dynamical singularities in the vitrification process
can be understood in a unified manner by considering the divergence of various moments
of the waiting time distribution for the non-trapped motion [15].

It should be remarked here that the intermediate scattering function, equation (11), of
the ideal three-mode model shows an exponential decay with some modification due to the
trapped motion [9]. This is simply due to the fact that the jump ratew for non-trapped
motion is assumed to be a constant in this model. As we have shown elsewhere [15], the
jump rate is likely to show a power-law distribution in glass formers, which leads to a
stretched-exponential decay of the intermediate scattering function [16].
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Appendix A. Derivation of equation (9)

First, we introduce the Laplace transform,P̃ (s, u), of the conditional probability,P(s, t):

P̃ (s, u) =
∫ ∞

0
P(s, t)e−ut dt. (A1)

The Laplace transforms of the master equations (6) and (7) read

uP̃ (n+ σ, u)− P(n+ σ, t = 0) = wb[P̃ (n, u)− P̃ (n+ σ, u)] (A2)
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and

uP̃ (n, u)− P(n, t = 0) =
∑
n′
wP̃ (n′, u)+

∑
σ

wbP̃ (n+ σ, u)− 6(w + wb)P̃ (n, u).

(A3)

Assuming that

P(n+ σ, t = 0) = δn,0δσ,0
and eliminatingP̃ (n+ σ, u) from equations (A2) and (A3), we find

uP̃ (n, u)− δn,0 =
∑
n′
wP̃ (n′, u)+

(
6w2

b

u+ wb − 6w − 6wb

)
P̃ (n, u). (A4)

Equation (A4) can be solved by introducing the Fourier transform, which leads to the
solution (9).
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